
Introduction
Long Short-Term Memory (LSTM) has been introduced by Hochreiter and Schmidthuber in the 90th of last century [1,2,3]. It has been 
used in various domains and could demonstrated a high effectiveness at numerous sequence-related tasks. It has been developed to 
overcome the vanishing gradient problem of recurrent neural networks (rNN) by  using a constant error carousel and gating [1,4].  
Although LSTM is a long-established method, this method still offers great utility and usage, which was highlighted by the recent 
publication of the extended LSTM method [5].
The ML workflow of LSTM is shown in Fig. 1(a). Data is transformed from model representation to a multi-dimensional tensor, see Fig 
1(b), the shape of the input and target tensors depend on the number of time steps and the machine learning step.  Pre-processed data 
flows into a network architecture which is represented by an LSTM cell, see. Fig. 1(c). The RNN is trained with the input data and then 
evaluated with a feedback loop to optimize set of hyper parameter, see Fig. 1(d). The optimization is gradient-based, and the evaluation 
criteria are „Mean Squared Error (MSE)“ and „Mean Absolute Error (MAE)“.

Results
Example 1: Damped Oscillator [20]
The Damped Oscillator is utilized as a toy dataset to proof the feasibility of the 
QLSTM [6]. Figure 4 shows a Comparison of 3 proposed circuits in the literature [6, 
21, 22 ]. The comparison was run with the framework code to ensure the 
comparability. Figure 4 highlights the importance of the chosen quantum circuit, 
since one qLSTM gets outperformed by the other ones. Figure 5 shows the predicted 
data in respect to the trainings data over the Epochs. The red line indicated the train-
test split, where the test split was never seen by the model during training. 
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Abstract: 
Long Short-Term Memory (LSTM) methods were introduced to overcome the vanishing gradient problem of recurrent neural networks in the 90’s. LSTM is still valuable method in deep learning and got recently enhanced by an extended LSTM method. 
LSTM can be used in different use cases, e.g. language modeling, machine translation (sequence to sequence learning), image captioning, handwriting generation, image generation using attention models. 
On basis of first published approaches of quantum LSTM we introduce a qLSTM framework utilizing the integrated PyTorch workflow in Qiskit. In our demonstrator we use LSTM for predicting time series data in a hybrid quantum-classical workflow. We 
use variational quantum circuits (VQA) for representing the weights in the classical LSTM cell. The variational quantum circuits are built of 2 parts: An encoding layer (quantum feature map) to load classical data points into quantum feature space, and a 
variational layer (ansatz) which contains the tunable parameters. 
We will show illustrative examples utilizing the Aer state vector simulator for noise free QC simulations as well as fake backends with noise models from current IBM eagle devices. To illustrate functionality of the qLSTM framework results will be 
presented with toy data of a damped oscillator, but also with real world data which were used to create climate stripes and financial transaction predictions.

qLSTM Approach
Since the first ideas on quantum LSTM were published in 2020 [6], the topic has developed into an emerging research field in various 
areas., for example in material synthesis [7], source code analysis [8 ], NLP [9], GAN [14], or time series prediction [11, 16, 18]. Studies 
comparing classical LSTM [11, 16] and extensions of qLSTM [10, 12, 13, 15, 17] have also been published. The promises of qLSTM  
depends on the applications, for example in some of the mentioned cases higher accuracy has been achieved or a lower dimensional 
hyperparameter space was necessary to achieve same quality in results.
In principle the qLSTM methods follows the classical LSTM workflow (Fig. 2(a), using the same LSTM cell, but instead of classical 
weights quantum variational circuits (VQC) are used, see Fig. 2 (a). A VQC consists of 2 layers: (1) a data encoding layer represented by 
quantum feature map which encodes data features in to a quantum hilbert space (fixed parameter) (2) a variational layer represented by 
an ansatz which is a parametrized quantum circuit. Both faeture map and ansatz are configurable, a good overview is given e.g. in [19].

These parameters are optimized in a hybrid quantum-classical execution loop according to the variational principle. For this optimization, 
a minimum of a Hamiltonian operator is computed. The quantum computer is used to measure a wave function represented by a 
parameterized quantum circuit. The measurement results are then fed into a classical optimizer to obtain a new set of parameters for the 
next measurements on the quantum computer until convergence is achieved. The Hamiltonian operator is in principle configurable. In this 
poster work, a Hamiltonian operator common in QML was used, a tensor product of Z-Pauli operators (7):
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qLSTM Workflow and Qiskit framework
The Qiskit framework for qLSTM (see Fig. 3) was 
developed in the form of generator files that were 
programmed in Python along the elements of a 
qLSTM workflow. The data preparation must be 
adapted to the respective data set. The data then 
flows into the qLSTM initialization, which is followed 
by model training. After evaluation, the quality of the 
model predictions is determined via the losses. The 
initialization of the qLSTM is supplemented by 
corresponding generator files programmed in Qiskit. 
Here, different feature maps, approaches, noise 
models and simulated or real quantum devices can 
be selected as the backend, or your own elements 
can be added. An qLSTM prediction of a certain data 
set can be parameterized in and then executed by 
qLSTM.py file. The framework will be made available 
soon as open source (work in progress). 

Example 2: Financial Transaction Prediction [19]
Dataset Overview 
For benchmarking the forecasting capabilities of our hybrid qLSTM model, we utilized the 1999 Czech Financial Dataset, which consists 
of real anonymized credit card transactions released for the PKDD'99 Discovery Challenge. The dataset contains financial records from 
Czech banks, including account information, loan records, and transaction details, covering the period from 1993 to 1998.

The dataset is divided into 9 files, each containing specific financial information. Our focus is on the Transactions file, which holds data on 
credit card transactions, as we want to predict the amount of the transaction. The used data is the difference of the transactions amounts, 
which is seen in Fig. 6.

Fig. 10: Climate Stripes (a) real data provided by [23] 1850-2023 (b) Climate Stripes unsed for qLSTM Training 1850-2018 and predicted 
 results for 2019-2023. 

(c) LSTM cell
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The gates and cell states of the LSTM cell can be described with the following equitations (1)-(6):

  Forget Gate determines what information from the previous cell 
state C(t-1) should be discarded:
 (1) f t = σ W%∗ h t − 1 , x t + b%

Input Gate controls which values from the input x(t) and the 
previous cell state C(t-1) should be updated:
(2)	i(t)	=	σ(W&∗	[h(t−1),	x(t)]	+	b&)

Candidate Cell State based on the input x(t) and the previous 
hidden state h(t-1):
(3)	C(t)	=	 tanh (W'∗	[h(t−1),	x(t)]	+	b')	

Update Cell State is based on the forget gate, input gate, and 
candidate cell state:
(4)	C(t)	=	 f(t)∗C(t−1)+i(t)∗C(t) 	

Output Gate determines the next hidden state h(t) based on the 
current cell state:
(5)	o(t)	=	σ(W(∗	[h(t−1),	x(t)]	+	b()

Final Hidden State based on the cell state and the output gate : 
(6)	C(t)	=	 o(t)∗ tanh(𝐶 𝑡 ) 	

Fig. 1: (a) ML workflow, (b) Dataset transformation model matrix to target vector, ( c) Network architectur – classical LSTM cell 
 [6], (d) LSTM training and evaluation procedure

Fig. 2: (a) VQC with data encoding and variational layer, Illustrative examples of (b) quantum feature map as data encoding 
  layer and (c) ansatz as variational layer (used in [6]), (d) qLSTM cell with VQCs as weights [6]
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Fig. 3:  qLSTM workflow and Qiskit framework

Fig. 6:  Normalized difference in Transaction amount over time 
 in the bank account

Final Model Setup
VQC - Feature Map:

VQC – Ansatz: 

Results
The table Tab. 1 shows  various LSTM models based on performance 
metrics: parameters, average Mean Absolute Error (MAE), Mean Squared 
Error (MSE), and computational time.
The LSTM PyTorch X model achieves the best performance, with an MAE 
of 0.1878, an MSE of 0.0673, and a runtime of 0.042 minutes. In contrast, 
QLSTM #10 offers a competitive MAE of 0.2087 and an MSE of 0.0769 but 
has a longer runtime of 55 minutes. Other QLSTM models show a trade-off 
between accuracy and efficiency.
Figures 8and 9 illustrate predictions from the classical QLSTM and LSTM 
models, respectively. Both align closely with the actual time series data, but 
the QLSTM shows smoother oscillation handling, particularly at the end, 
indicating potential for capturing long-range dependencies.

Fig. 9: Predictions (dashed) 
from the classical LSTM model

Fig. 8: Predictions (dashed) 
from the QLSTM  model

Tab. 1: Comparison of LSTM vs QLSTM with different 
  settings and enviroments. 

Fig. 4:  qLSTM Circuit Comparison

Fig. 5:  qLSTM Prediction over Epochs

Fig. 7:  Final  quantum circuits for data encoding (Feature Map)  
 and variational layer (Ansatz).

Example 3: Climate stripes prediction (work in progress)
Climate stripes showing intuitively the global warming is presented every by Ed Hawkins from University of Reading (UK) 
[23]. The last publish stripes are shown in Figure 10(a). As a further example of predicting a time series based on real data 
with qLSTM we chose the climate data give by MetOffice [24] for the global temperature change from 1850-2018. As a first 
approach we predicted the missing temperature data fdata for 2019-2023 (see Figure 10 (b)). Further improvements of the 
qLSTM model and prediction to a further future are currently work in progress and the complete results are planned to be 
published soon.
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